If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7k^2+57k+8=0
a = 7; b = 57; c = +8;
Δ = b2-4ac
Δ = 572-4·7·8
Δ = 3025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3025}=55$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(57)-55}{2*7}=\frac{-112}{14} =-8 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(57)+55}{2*7}=\frac{-2}{14} =-1/7 $
| 3(y+5)=5y+15 | | -x^2-11x-20=0 | | Y+1/8y-1/6=4/3(y-3/8 | | 6n=15+-42 | | 5(x+5)-15=0 | | 2|n+6|+11=3 | | -17/2=-3/2+5/6n | | -81/2=-11/2+5/6n | | a+14=46 | | 3(-6=5v)=-39-6v | | 3(x-3)+3=3(2x-6) | | |y+7|=2y+5 | | x^2+20x+7=6 | | 5c+c^2=-4 | | 7h/12=4h/12=18/12 | | 10x=4.9 | | 15x^2+84x-147=0 | | -2/c=-20/23 | | 2x+114=420-x | | -s+12+3s=4s-12 | | 3x+2x+(3x+9)=180 | | 8(4x-6)=33x | | 3x+12+5x=+20-12 | | *3x+6x=15 | | 6x-18=4x+1 | | 4x-12-3x=6 | | x+16=1/(x-8) | | 8x-19x=44-11 | | x+(x-35)+(x-45)+1/2x=180 | | x2+24x=127=0 | | 4n^2-30=-14n | | 5p+5=10p |